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ABSTRACT

Large language models have demonstrated exceptional performance in recent years. While wider
and deeper network architectures enable these models to learn more comprehensive knowledge, they
also pose challenges for deployment on edge devices. Compressing models not only reduces storage
requirements, making edge deployment feasible, but also accelerates inference, thereby reducing
latency and computational costs. Structured pruning, which removes filters at the architectural
level, offers a way to achieve a more compact model while maintaining target accuracy, ensuring
compatibility and hardware efficiency. Our method is based on the observation that different decoder
layers in LLMs contribute unequally to model performance. We introduce Adapt-Pruner, which
leverages this insight by measuring the distance between the input and output tensors of a decoder
layer to assign appropriate sparsity. Layers more sensitive to pruning are assigned lower sparsity. We
conducted experiments on three cutting-edge open-source models—LLaMA-3.1-8B, Qwen2.5-7B,
and Gemma-2-9B. Experiment results show that Adapt-Pruner retains 90.9% of LLaMA-3.1-8B’s
average benchmark scores at 25% sparsity without post-training. We also compare our approach to
other state-of-the-art structured pruning methods to verify its effectiveness.

1 Introduction

Large language models (LLMs) [Kalyan, 2024, OpenAI, 2023] have demonstrated remarkable performance across a
wide range of benchmarks. As their size increases, these models exhibit enhanced capabilities in understanding natural
language and solving complex tasks through text generation [Zhao et al., 2023]. However, achieving such performance
requires models with billions of parameters, which presents significant challenges for practical deployment. The sheer
scale of LLMs leads to high computational costs, making inference both resource-intensive and slow, and potentially
introducing issues such as increased latency. Consequently, there is a growing demand for methods to compress LLMs
[Zhu et al., 2024], aiming to reduce the number of parameters and improve inference speed, all while preserving the
original model performance. Effective compression techniques hold the potential to create more efficient and deployable
LLMs.

Several techniques have been proposed to compress LLMs, most of which fall into one of four categories: structured
and unstructured pruning [Cheng et al., 2024], quantization [Gholami et al., 2022], low-rank factorization [Sainath
et al., 2013], and knowledge distillation [Gou et al., 2021]. In this paper, we primarily focus on structured pruning,
though we hope the insights from our methods will also inform future work in other categories. Structured pruning
removes entire filters from neural networks, enabling both compression and realistic acceleration on standard hardware.
Unlike unstructured pruning, it does not require specialized hardware or library support to achieve these benefits [He
and Xiao, 2023].

While many works on structured pruning focus on removing a fixed number of filters from weight matrices with minimal
performance degradation, these methods often either skip important layers or apply uniform sparsity across all layers.
However, as shown in Figure 1, the importance of each decoder layer—and by extension, each weight matrix—varies
significantly. To address this, we introduce a novel approach called Adapt-Pruner. Unlike traditional pruning methods

∗Equal contribution.



A PREPRINT

Figure 1: Layer sensitivity and pruned Models. The first row of figures shows the increase in perplexity when a single
decoder layer is pruned at 50% sparsity, compared to the dense LLaMA-3.1-8B model, as well as models uniformly
pruned across all layers at 10% and 20% sparsity. The second row of figures illustrates the architecture of the pruned
models, with each decoder layer represented by its corresponding number of parameters.

that enforce the same sparsity across all decoder layers, Adapt-Pruner operates in multiple steps. At each step, it
calculates the relative importance of each decoder layer and applies varying sparsity levels, assigning higher sparsity to
less important layers and lower sparsity to more critical ones. After determining the sparsity for each layer, we assess
the importance of each weight group using both magnitude and first-order information, selecting the least important
groups for pruning. When computational resources allow, post-training stages are periodically applied after several
pruning steps to recover any performance loss resulting from the pruning process.

Our main contributions are as follows:

1. We propose a novel structured pruning method, Adapt-Pruner, which quantitatively estimates the importance
of each decoder layer and prunes adaptively.

2. This method leverages the insight that the importance of each decoder layer varies, and that their relative im-
portance may shift throughout the pruning process. This adaptiveness leads to higher performance, particularly
at high pruning ratios.

3. We conduct extensive experiments on LLaMA-3.1 [AI@Meta, 2024], Qwen2.5 [Team, 2024a], and Gemma
[Team, 2024b], demonstrating that Adapt-Pruner can compress these models by up to 25%, while retaining
90.6% of the average benchmark scores of the dense model, without post-training, and outperforming state-of-
the-art methods.

2 Related Work

Pruning Pruning removes weights and modifies the model’s architecture. Formally, given a neural network f(x;W ),
pruning produces a new model f(x;M ⊙W ), where M ∈ {0, 1}|W | is a binary mask that sets certain parameters to
zero, and ⊙ denotes element-wise multiplication. Pruning typically reduces the network’s performance, so post-training
is often employed to recover this loss [Blalock et al., 2020]. Unstructured pruning removes individual weights, resulting
in sparsified weight matrices, but this does not lead to inference speedups unless specialized hardware is available
[Dery et al., 2024]. In contrast, structured pruning operates at a larger granularity, removing entire weight groups.
This includes width pruning [Ma et al., 2023, Ashkboos et al., 2024], which removes groups of coupled weights, and
depth pruning [Kim et al., 2024, Siddiqui et al., 2024], which eliminates entire layers. Some approaches also explore
pruning during pretraining, achieving impressive results [Xia et al., 2024]. However, given the immense computational
cost—equivalent to pretraining a model—this approach is often impractical. Our focus is on post-training structured
pruning, balancing generality and hardware efficiency.

Adaptive Compression Several works have explored adaptive compression. [Dong et al., 2024] selects transformer
feedforward experts and removes feedforward neurons during inference based on their high activation magnitudes from
input prompts. While this method is effective, we seek an approach that can reduce model size without depending
on specific input prompts. [An et al., 2023] computes the sample variance of each input feature and weights it by the
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Figure 2: Illustration of Adapt-Pruner. We begin by measuring the distance between each decoder layer’s input and
output tensors to assess its importance and assign a corresponding sparsity. Based on this assigned sparsity, we then
prune the coupled weights in each decoder layer accordingly.

squared norm of the corresponding column in the weight matrix to determine a layer’s importance and assign sparsity
accordingly. However, compared to our method, which directly measures the distance between a layer’s input and
output tensors to determine importance, we achieve superior results (see 4).

Knowledge Distillation Knowledge distillation is a technique used to transfer the advanced capabilities of high-
performing LLMs to smaller models [Xu et al., 2024]. Combining knowledge distillation with pruning can yield strong
performance, where the original model acts as the teacher and the compressed model serves as the student [Sreenivas
et al., 2024]. In this paper, we focus on the adaptive pruning algorithm, but it could achieve even better performance
when integrated with state-of-the-art knowledge distillation techniques.

3 Method

Given a large language model M, represented as a sequence of embedded layers with N decoder layers, denoted as
LN , along with a final output layer, our method leverages the insight that each decoder layer contributes differently
to the model’s overall performance. Adapt-Pruner compresses the model through multiple iterations, with each
iteration comprising three steps: (1) quantitatively computing the importance of each decoder layer and assigning
a corresponding pruning sparsity; (2) grouping the weights within each decoder layer, evaluating the importance of
each coupled structure, and pruning the least important structures based on the assigned sparsity; and (3) periodically
applying a post-training stage after a specified number of iterations to recover any performance drop caused by pruning.
Figure 2 gives an illustration of our method.

3.1 Assign Sparsity based on Importance

Let Li denote the ith decoder layer, Ii and Si represent the importance and sparsity of the ith decoder layer, and
Li
in and Li

out denote the input and output tensors of the ith decoder layer, respectively. Our goal is to estimate the
importance of each decoder layer.

Estimate Decoder Layer’s Importance Our pruning method targets only the multi-head attention and multilayer
perceptron components within the decoder layers, leaving the hidden size unchanged. Consequently, the input and
output tensors for each decoder layer have identical shapes:

∀i = 0, 1, . . . , N − 1,Shape(Li
in) = Shape(Li

out) = (B,L,H) (1)
where B,L,H denote the batch size, sequence length, and hidden size, respectively. Based on this, we use a function
that measures the vector similarity or distance between Li

in and Li
out to assess the changes in the tensor caused by

each decoder layer. The greater the similarity or the smaller the distance between Li
in and Li

out, the less important that
decoder layer is. A practical choice for this distance measurement is cosine similarity. We can compute a decoder
layer’s importance as follows:

∀i = 0, 1, . . . , N − 1, Ii = −cosine_similarity(Li
in,Li

out) (2)
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Algorithm 1 Adaptive Pruning Algorithm

Require: Number of decoder layer in the LLM N , decoder layer instances in the LLM {Li}Ni=1, overall sparsity after pruning S,
iteration times to prune T , iteration period to post-train P , amplitude of sparsity between decoder layers A, similarity function,
use cos in default Simfunc ← cosine_similarity()

1: for i← 1 . . . T do
2: Scur ← (S ∗ i/T )
3: I ← {0}N , S ← {0}N
4: for j ← 1 . . . N do
5: Ij ← Simfunc(Lj

in,L
j
out)

6: end for
7: Normalize IN to have 0 mean value, limit range to [-1, 1] and times -1 if lower is better
8: for j ← 1 . . . N do
9: Sj ← Scur −A ∗ Ij

10: end for
11: Prune the LLM based on the sparsity
12: if i mod P = 0 then
13: Post-train LLM
14: end if
15: end for

This method can easily be extended to alternative similarity or distance functions, such as Euclidean or Manhattan
distance. To ensure consistency, we normalize the decoder layer’s importance to the range [−1, 1] with a mean of 0, as
follows:

Ii = Ii − Imean (3)

Ii =
Ii

max |abs(I)|
(4)

Assign Sparsity Now that we have computed the importance of each layer, we need a method to link a layer’s
importance to its sparsity. We adopt an empirical approach to address this. Let A denote the amplitude of sparsity, such
that we have:

∀i = 0, 1, . . . , N − 1,Si = Sbase −A ∗ Ii (5)

where Sbase is the target overall sparsity of the model. This method ensures that each decoder layer’s sparsity is
inversely proportional to its importance while maintaining the average sparsity consistent with the intended overall
model sparsity.

Based on the observations from 1, the importance of each layer varies throughout the pruning process. This variation
necessitates breaking the pruning into multiple iterative steps, allowing each layer’s sparsity to be adjusted progressively,
leading to improved results.

3.2 Pruning Weight Groups Inside Decoder Layer

We use the method from [Ma et al., 2023, Fang et al., 2023] to build dependency graph for LLMs, which could
automatically identify and extract coupled structures in LLMs.

Weight Group Importance With grouped structures and target sparsity defined for each group, the next step is
selecting weight matrices to prune to minimize performance degradation. For any grouped weight structure G = W k,
containing k weight matrices, we use a calibration dataset D to assess the relative importance of each matrix. Following
[LeCun et al., 1989, Ma et al., 2023], the importance of the ith weight matrix in layer L is defined as:

IWi
= |∆L(D)| = |LWi

(D)− LWi=0(D)| = |∂L
⊤(D)

∂Wi
Wi −

1

2
Wi

⊤HWi +O
(
∥Wi∥3

)
| (6)

where H = ∂L2(D)
∂W 2

i
is the Hessian matrix. Calculating the Hessian requires O(N2) computational resources, so we

omit it to accelerate pruning, as well as the term O
(
|Wi|3

)
, which is generally small. This simplifies the estimated

weight matrix importance to:

ÎWi = |∂L
⊤(D)

∂Wi
Wi| (7)
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Thus, we assess each weight matrix’s importance by taking the l1 norm of the element-wise product between its gradient
(derived from the calibration dataset) and its weight value. After computing importance scores, we sort the matrices and
prune those with the lowest scores to achieve the desired sparsity level.

3.3 Periodic Recovery Post-Training with Knowledge Distillation

To achieve the target overall sparsity, our model undergoes multiple rounds of pruning, which inevitably leads to
performance degradation. To mitigate this, we periodically apply post-training after certain pruning steps to restore lost
performance. Balancing performance recovery with computational efficiency, we employ a low-rank approximation
method [Hu et al., 2021a] during post-training on the compressed model. Since additional pruning follows each
post-training phase, the low-rank matrices generated are merged back into the original weight matrices.

Knowledge distillation [Xu et al., 2024] enables the transfer of knowledge from a larger or more advanced teacher
model to a smaller, compressed student model. To preserve performance in the compressed model, we use the original
model as the teacher and the corresponding compressed model as the student. Specifically, during post-training, we add
a penalty term to the loss function to measure the divergence between the probability distributions of the teacher model,
pt, and the student model, ps, given an input x. This results in a modified loss function:

L = α ∗ Loss(pt(x), ps(x)) + (1− α) ∗ Loss(label(x), ps(x)) (8)

where α is a hyperparameter that controls the influence of the teacher model on the student’s learning. By leveraging the
knowledge of the original model, the compressed model retains more of its performance. Algorithm 1 gives a detailed
description of our method.

4 Experiment

4.1 Settings

Setup We extend the LLM-Pruner framework [Ma et al., 2023, Fang et al., 2023] as our baseline, incorporating
modules for computing similarity scores and adaptive pruning using PyTorch [Paszke et al., 2019]. Our experiments
utilize an NVIDIA A40 GPU with 48GB of memory for post-training and evaluation, while all pruning processes are
computed on an Intel(R) Xeon(R) Gold 6346 CPU, which features 16 cores per socket (32 cores total) running at 3.10
GHz.

In our experiments, we employ cosine similarity between the input and output tensors to assess the importance of
decoder layers. The calibration dataset we use is bookcorpus [Zhu et al., 2015], with a default of 10 examples, each
truncated to a length of 64 tokens.

Models and Datasets To demonstrate the effectiveness of our methods, we evaluate them on three widely-used
open-source models: Llama-3.1-8B [AI@Meta, 2024], Qwen2.5-7B [Team, 2024a, Yang et al., 2024], and Gemma-2-9B
[Team, 2024b]. For task-agnostic performance evaluation of the pruned models, we perform zero-shot classification on
several common-sense reasoning datasets: ARC-easy and ARC-challenge [Clark et al., 2018], BoolQ Clark et al. [2019],
HellaSwag [Zellers et al., 2019], OpenBookQA [Mihaylov et al., 2018], PIQA [Bisk et al., 2020], and WinoGrande
[Sakaguchi et al., 2021]. Additionally, we supplement our evaluation with a generation task using WikiText2 [Merity
et al., 2016]. Following prior work [Ma et al., 2023, An et al., 2023, Ashkboos et al., 2024], we employ the LM
Evaluation Harness [Gao et al., 2024] with default parameters, except that all models use the bfloat16 data type, and the
batch size is set to ‘auto’ during evaluation.

Baseline Setup To validate the effectiveness of our adaptive pruning method based on decoder layer similarity, we
compare it to the LLM-Pruner framework. Additionally, we benchmark our approach against other state-of-the-art
structured pruning methods, including FLAP [An et al., 2023] and SliceGPT [Ashkboos et al., 2024]. We evaluate
all methods at three sparsity ratios—25%, 50%, and 75%—without post-training to isolate the impact of the pruning
algorithm and avoid any unintended effects from post-training.

4.2 Results

Zero-shot and Generation Tasks We begin by evaluating our methods on three models: LLaMA-3.1-8B, Qwen2.5-
7B, and Gemma-2-9B, across 25%, 50%, and 75% pruning sparsity. We skip the first and last three decoder layers for
LLaMA and Qwen, and the first and last four layers for Gemma, as these layers tend to be too important for pruning.
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Table 1: Zero-shot and generation task performance of the compressed LLaMA-3.1-8B, Qwen2.5-7B, and Gemma-2-9B
models. The average performance is calculated across seven classification datasets. For Gemma-2, the "eager" attention
implementation is used, as it is better suited for post-training. The evaluation metric is acc_norm for ARC-e, ARC-c,
HellaSwag, OBQA, and PIQA; acc for BoolQ and WinoGrande; and word_perplexity for WikiText2.

Pruning Sparsity Model Para. Num. ARC-e ARC-c BoolQ HellaSwag OBQA PIQA Winogrande Average WikiText2↓

Dense
LLaMA-3.1-8B 8.03B 81.19 53.33 82.08 78.89 44.80 81.12 73.64 70.21 7.33
Qwen2.5-7B 7.62B 77.36 51.02 84.68 78.93 47.00 79.76 72.93 70.24 8.74
Gemma-2-9B 9.24B 88.05 66.04 84.34 79.89 46.80 83.19 74.11 74.63 10.60

Ratio = 25%
w/o tune

LLaMA-3.1-8B 6.67B 70.16 43.17 73.79 69.44 42.00 77.20 71.19 63.85 14.26
Qwen2.5-7B 6.39B 67.13 41.30 72.97 68.67 41.40 77.37 65.27 62.02 14.51
Gemma-2-9B 7.65B 74.62 47.01 75.60 60.81 39.20 75.63 65.04 62.56 20.89

Ratio = 25%
w/ tune

LLaMA-3.1-8B 6.67B 75.46 47.18 80.43 73.20 41.00 79.33 72.61 67.03 11.63
Qwen2.5-7B 6.39B 74.66 47.70 78.75 71.93 43.00 78.51 69.46 66.29 12.44
Gemma-2-9B 7.65B 80.43 53.75 82.63 71.03 42.20 78.89 68.43 68.19 15.49

Ratio = 50%
w/o tune

LLaMA-3.1-8B 5.26B 52.10 31.57 63.27 51.51 33.60 70.51 61.09 51.95 38.52
Qwen2.5-7B 5.13B 45.45 28.84 55.47 51.36 36.80 69.42 56.27 49.09 44.07
Gemma-2-9B 5.96B 53.11 29.10 61.59 40.10 28.80 65.18 51.70 47.08 214.08

Ratio = 50%
w/ tune

LLaMA-3.1-8B 5.26B 61.74 37.12 71.35 59.62 33.60 72.96 64.72 57.30 19.46
Qwen2.5-7B 5.13B 52.69 33.62 54.07 57.69 37.20 72.52 59.83 52.52 21.58
Gemma-2-9B 5.96B 66.58 36.60 71.65 54.43 37.60 70.89 59.19 56.71 28.08

Ratio = 75%
w/o tune

LLaMA-3.1-8B 4.20B 32.58 24.74 57.68 33.32 26.40 58.05 52.25 40.72 430.20
Qwen2.5-7B 3.97B 38.09 22.53 57.25 35.28 27.80 58.98 49.17 41.30 164.23
Gemma-2-9B 4.32B 30.30 24.74 42.45 27.30 25.60 52.45 50.59 36.20 203176.96

Ratio = 75%
w/ tune

LLaMA-3.1-8B 4.20B 46.00 27.30 61.62 42.99 28.40 64.85 55.09 46.61 35.20
Qwen2.5-7B 3.97B 44.65 26.62 54.83 40.67 30.00 63.28 54.38 44.92 37.90
Gemma-2-9B 4.32B 49.87 27.13 56.61 37.10 27.60 63.76 51.70 44.82 66.68

Table 1 presents the zero-shot performance and perplexity of pruned models at various sparsity levels. Our results show
that the pruned LLaMA models retain 90.9% of the benchmark average scores of the dense model at 25% sparsity and
74.0% at 50% sparsity without post-training. Similarly, the adaptive pruner achieves comparable results for the Qwen
and Gemma models, maintaining 88.3% and 83.8% performance at 25% sparsity, respectively, without post-training.
While perplexity increases moderately for LLaMA and Qwen at 25% and 50% sparsity, and for Gemma at 25%, it
rises dramatically beyond these levels. These findings highlight the effectiveness of the adaptive pruner in compressing
models without post-training. However, at 75% sparsity, performance declines significantly, likely due to architectural
disruption, suggesting that some post-training may be necessary to sustain the performance of highly compressed
models.

We further add experiments here with recovery post training using the dataset OpenHermes 2.5 [Teknium, 2023]. We
apply a final post-training using LoRA [Hu et al., 2021b]. For all post-training experiments, we use 0.1 training epochs
with each data point truncated to 512 tokens. The LoRA configuration includes lorar = 128 and loraalpha = 16, with
default values for all other hyperparameters from the Hugging Face PEFT package [Mangrulkar et al., 2022].

Table 1 also presents the results following post-training. With post-training, the average benchmark score for LLaMA
increases to 95.5% at 25% sparsity and 81.6% at 50% sparsity. However, it is important to note that the performance on
several benchmarks may drop after post-training. This decline could be attributed to knowledge forgetting, as the model
may adapt too closely to the post-training dataset used.

Structured Pruning Methods Comparison We compare our method to the baseline LLM-Pruner, as well as other
state-of-the-art structured pruning methods, including FLAP and SliceGPT. To ensure a fair comparison, we do not skip
the first or last layers when applying the adaptive pruner. All hyperparameters for these methods are set to their default
values. The LM Evaluation Harness [Gao et al., 2024] is used to evaluate the compressed models produced by each
method.

Table 2 presents a comparison of structured pruning methods. Adaptive pruning demonstrates improvements of 20.6%
and 24.1% in average benchmark scores at 25% and 50% sparsity, respectively, compared to LLM-Pruner, which utilizes
uniform pruning. The results also indicate that the adaptive pruner outperforms both FLAP and SliceGPT at these
sparsity levels, suggesting that our method, which measures the changes in input and output tensors to evaluate decoder
layer importance, is more effective than FLAP’s approach, which combines input variance and weight magnitude.
However, as pruning sparsity increases, the performance gap between adaptive pruning and other methods narrows.
This may be due to higher sparsity leading to significant knowledge loss, resulting in similar performance across all
structured pruning methods.
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Table 2: Comparison of structured pruning methods, including LLM-Pruner, FLAP, and SliceGPT, on LLaMA-3.1-8B
across different sparsity levels. Bold font indicates the optimal method for each criterion within the same sparsity group.

Pruning Sparsity Method Para. Num. ARC-e ARC-c BoolQ HellaSwag OBQA PIQA Winogrande Average WikiText2↓

Ratio = 25%
w/o tune

LLM-Pruner 6.29B 48.15 30.80 61.41 50.02 29.40 68.28 51.78 48.55 24.85
FLAP 6.12B 49.20 30.03 57.74 52.18 35.40 68.99 59.98 50.50 15.35
SliceGPT 6.78B 42.93 27.39 37.86 44.99 33.80 58.65 60.69 43.76 30.96
Adapt-Pruner 6.36B 64.56 38.82 64.83 62.99 39.60 77.48 67.40 59.38 18.69

Ratio = 50%
w/o tune

LLM-Pruner 4.54B 25.55 24.91 37.86 25.95 27.60 51.03 49.64 34.65 632.58
FLAP 4.34B 24.20 25.26 40.70 26.37 26.00 51.25 50.36 34.88 270251.54
SliceGPT 4.58B 30.72 22.01 37.83 29.85 24.60 51.85 48.70 35.08 118.55
Adapt-Pruner 4.61B 37.29 25.17 60.73 35.60 28.80 60.77 52.09 42.92 95.59

Ratio = 75%
w/o tune

LLM-Pruner 2.80B 25.72 24.83 38.65 25.74 29.60 50.16 50.59 35.04 5478.46
FLAP 2.77B 25.34 26.71 43.06 26.42 28.60 52.45 49.88 36.07 169822.13
SliceGPT 2.52B 28.20 22.01 37.83 27.77 24.80 51.09 50.12 34.55 741.92
Adapt-Pruner 2.88B 27.74 22.27 39.14 27.15 27.00 52.61 50.83 35.25 734.18

4.3 More Analysis

Efficient Performance Transfer via Model Compression We investigate the efficacy of model compression as an
alternative to training from scratch, with particular focus on computational efficiency. Through knowledge distillation
and comprehensive parameter fine-tuning on OpenHermes-2.5, we demonstrate our method’s versatility by compressing
two different architectures: LLaMA-3.2-3B to 1.13B parameters and LLaMA-2-7B to 1.16B parameters. We conduct
comparative analyses against similarly-sized pretrained models to evaluate compression effectiveness. The pretrained
TinyLlama-1.1 checkpoint serves as our baseline, enabling quantitative assessment of performance preservation through
distillation despite pruning-induced degradation.

Table 3: Comparison of Compressed Model with Pretrained Model
Model Para. Num. Tokens Needed ARC-e ARC-c BoolQ HellaSwag OBQA PIQA Winogrande Average WikiText2↓

Compressed
LLaMA2-7B

1.16B

0.00B 26.52 27.39 38.81 25.79 24.00 49.73 49.80 34.58 69962.30
0.06B 36.36 22.87 58.84 27.86 26.80 57.45 50.04 40.03 119.74
0.14B 38.26 24.15 60.40 28.61 25.80 56.91 49.72 40.55 86.58
0.17B 38.43 24.06 60.12 28.68 27.40 57.02 49.80 40.79 84.76

Compressed
LLaMA3.2-3B

1.13B

0.00B 26.26 25.77 41.87 25.86 27.80 51.63 50.91 35.73 1940.24
0.05B 42.85 24.66 60.49 29.05 28.40 58.87 50.04 42.05 65.94
0.11B 43.31 24.32 61.56 28.95 31.40 60.55 51.38 43.07 51.91
0.15B 43.48 24.57 61.87 28.78 29.40 60.34 49.96 42.63 49.59

TinyLlama-1.1 1.10B 10B 38.59 22.53 47.95 33.12 30.20 61.70 50.91 40.71 33.48
21B 41.08 23.72 58.38 35.79 30.20 63.60 52.49 43.61 27.39

As demonstrated in Table 3, our compressed 1.1B model achieves superior performance to TinyLlama-1.1 while
requiring only 0.05B training tokens, compared to TinyLlama’s 10B pretraining tokens. This empirical evidence
substantiates that structured pruning, combined with knowledge distillation, not only enables model size reduction
but also provides a computationally efficient framework for obtaining high-performing compact models. The 200×
reduction in required training tokens highlights the significant computational advantages of our compression-based
approach.

Sensitivity Analysis of Amplitude Parameter A We empirically investigate the impact of amplitude parameter
A in Equation 5 on our algorithm’s performance. The amplitude A directly influences the architectural search space
of the compressed model: insufficient amplitude constrains the exploration of potential architectural configurations,
while excessive amplitude can lead to structural imbalances that degrade model performance. To systematically
analyze this relationship, we conduct experiments on LLaMA-3.1-8B using a controlled setup where we maintain
consistent parameters (50% overall sparsity ratio and 50 pruning iterations) while varying the amplitude A across
pruning steps. This experimental design allows us to isolate and quantify the specific effects of amplitude variation on
model compression outcomes.

As demonstrated in Table 4, the baseline case of A = 0 represents uniform pruning without our proposed adaptive
mechanism. Notably, varying the amplitude A yields different final parameter counts due to its influence on architectural
decisions during compression. Our experimental results reveal that A = 0.02 achieves optimal performance, maximizing
the benchmark average while minimizing model complexity on WikiText2. The performance exhibits a non-monotonic
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Table 4: Sensitivity analysis of amplitude parameter A in progressive pruning, with 50% sparsity and 50 pruning steps

Amplitude A Para. Num. ARC-e ARC-c BoolQ HellaSwag OBQA PIQA Winogrande Average WikiText2↓
0 4.54B 29.04 21.84 45.47 28.22 27.00 53.81 48.30 36.24 621.03
0.005 4.62B 37.25 22.87 55.90 33.89 27.80 59.52 52.64 41.41 122.04
0.01 4.61B 37.29 25.17 60.73 35.60 28.80 60.77 52.09 42.92 95.59
0.02 4.43B 40.61 26.45 62.05 35.18 28.20 62.30 53.67 44.07 90.80
0.04 4.04B 34.51 24.06 56.21 31.17 26.40 57.34 51.78 40.21 314.90

relationship with A: as amplitude increases, model performance initially improves before degrading, consistent with the
theoretical trade-off between exploration capacity and architectural stability.

Impact of Distillation Coefficient α We systematically analyze the distillation coefficient α in the objective function
(Equation 8), which controls the balance between learning from ground truth labels and the teacher model’s behavior
during post-training. Using the optimal compressed model configuration identified in Table 4, we conduct controlled
experiments with varying α values while maintaining consistent hyperparameters. The experiments utilize LoRA for
fine-tuning on the OpenHermes-2.5 dataset, with the original LLaMA-3.1-8B serving as the teacher model.

Table 5: Impact of Distillation Coefficient α using LoRA with LLaMA-3.1-8B as the teacher model

Tokens Needed Coefficient α ARC-e ARC-c BoolQ HellaSwag OBQA PIQA Winogrande Average WikiText2↓

0.04B

0 49.75 27.56 62.84 46.37 32.20 68.12 56.51 49.05 33.78
0.25 49.92 27.65 62.20 46.65 30.60 68.50 56.91 48.92 33.67
0.50 50.42 28.16 62.11 46.95 30.00 68.44 55.96 48.86 34.00
0.75 50.13 27.99 62.35 47.23 30.40 68.50 56.12 48.96 34.59
1.00 49.75 28.58 62.42 46.68 29.80 68.61 55.64 48.78 36.13

As demonstrated in Table 5,

Computation Cost LLaMA-3.1-8B, Qwen2.5-7B, and Gemma-2-9B can be pruned adaptively in 2 to 5 minutes on a
single NVIDIA A40 GPU, and in 15 to 30 minutes on an Intel(R) Xeon(R) Gold 6346 CPU. After applying iterative
post-training, the full compression process takes between 3 and 10 hours. Benchmark evaluation of the compressed
models requires an additional 15 to 30 minutes.

5 Conclusion

In this paper, we present Adapt-Pruner, an adaptive and structured pruning method for large language models. Our
approach evaluates each decoder layer and assigns corresponding sparsity, prunes coupled weight structures based
on weight magnitude and first-order information, and periodically applies post-training to recover any performance
drops. We test our method on a variety of popular open-source LLMs. The results show that Adapt-Pruner retains
90.9%, 88.3%, and 83.8% of the benchmark average scores of the dense model at 25% sparsity without post-training
for LLaMA-3.1, Qwen2.5, and Gemma-2, respectively. With periodic post-training, these scores increase to 95.5%,
94.4%, and 91.4%, respectively. Our experiments also demonstrate that Adapt-Pruner outperforms other structured
pruning methods, including SliceGPT and FLAP, indicating that our method, which measures changes in input and
output tensors to evaluate decoder layer importance, is more effective than FLAP’s approach, which combines input
variance and weight magnitude.

There is room for improvement in our method. Currently, we relate layer importance to sparsity using a straightforward
amplitude, which may not be the optimal approach to fully leverage this information for achieving theoretical maximum
effectiveness. Additionally, while periodic post-training during pruning helps recover performance losses, it also
imposes quality demands on the dataset, potentially causing the LLMs to forget previously learned information.
Moreover, post-training can introduce significant computational costs to the pruning process. Future work could focus
on enhancing the efficiency of post-training to address these challenges.

We hope our work inspires future research to quantitatively evaluate the importance of decoder layers and leverage this
insight when compressing LLMs, ultimately leading to the development of more efficient deep neural networks.
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