ADAPT-PRUNER: ADAPTIVE AND STRUCTURED PRUNING FOR
EFFICIENT LARGE LANGUAGE MODELS

A PREPRINT

Boyao Wang * RuiPan* Tong Zhang
University of Illinois Urbana-Champaign
boyaow2@illinois.edu, rpan2@illinois.edu, tozhang@illinois.edu

ABSTRACT

Large language models have demonstrated exceptional performance in recent years. While wider
and deeper network architectures enable these models to learn more comprehensive knowledge, they
also pose challenges for deployment on edge devices. Compressing models not only reduces storage
requirements, making edge deployment feasible, but also accelerates inference, thereby reducing
latency and computational costs. Structured pruning, which removes filters at the architectural
level, offers a way to achieve a more compact model while maintaining target accuracy, ensuring
compatibility and hardware efficiency. Our method is based on the observation that different decoder
layers in LLMs contribute unequally to model performance. We introduce Adapt-Pruner, which
leverages this insight by measuring the distance between the input and output tensors of a decoder
layer to assign appropriate sparsity. Layers more sensitive to pruning are assigned lower sparsity. We
conducted experiments on three cutting-edge open-source models—LLaMA-3.1-8B, Qwen2.5-7B,
and Gemma-2-9B. Experiment results show that Adapt-Pruner retains 90.9% of LLaMA-3.1-8B’s
average benchmark scores at 25% sparsity without post-training. We also compare our approach to
other state-of-the-art structured pruning methods to verify its effectiveness.

1 Introduction

Large language models (LLMs) [Kalyan, 2024, |OpenAlL 2023 have demonstrated remarkable performance across a
wide range of benchmarks. As their size increases, these models exhibit enhanced capabilities in understanding natural
language and solving complex tasks through text generation [Zhao et al.,|2023|]. However, achieving such performance
requires models with billions of parameters, which presents significant challenges for practical deployment. The sheer
scale of LLMs leads to high computational costs, making inference both resource-intensive and slow, and potentially
introducing issues such as increased latency. Consequently, there is a growing demand for methods to compress LLMs
[Zhu et al., [2024]], aiming to reduce the number of parameters and improve inference speed, all while preserving the
original model performance. Effective compression techniques hold the potential to create more efficient and deployable
LLMs.

Several techniques have been proposed to compress LLMs, most of which fall into one of four categories: structured
and unstructured pruning [Cheng et al.| [2024], quantization [[Gholami et al., [2022]], low-rank factorization [Sainath
et al.,[2013]], and knowledge distillation [|Gou et al.,|[2021]]. In this paper, we primarily focus on structured pruning,
though we hope the insights from our methods will also inform future work in other categories. Structured pruning
removes entire filters from neural networks, enabling both compression and realistic acceleration on standard hardware.
Unlike unstructured pruning, it does not require specialized hardware or library support to achieve these benefits [He
and Xiao| [2023]].

While many works on structured pruning focus on removing a fixed number of filters from weight matrices with minimal
performance degradation, these methods often either skip important layers or apply uniform sparsity across all layers.
However, as shown in Figure[T} the importance of each decoder layer—and by extension, each weight matrix—varies
significantly. To address this, we introduce a novel approach called Adapt-Pruner. Unlike traditional pruning methods

*Equal contribution.

A PREPRINT

Perplexity Increase for 50% Sparsity in Single Layer Pruning

(O]
¥ 307 Based on dense
g Based on 10% Sparsity
£ 201 Based on 20% Sparsity
>
=
ixJ 10 4
o
j -
L , . . : s ‘
0 5 10 15 20 25 30
Decoder Layer Index
. 1e8 Llama-3.1-8B . 1eg Pruned by LLM-Pruner & 1eg Pruned by Adapt-Pruner
220 2 2.0 2 2.0
© © ©
o 151, . ‘ o 1515 : : . ‘ . . o 1514 . . - . . .
o 0 5 10 15 20 25 30 o 0 5 10 15 20 25 30 o 0 5 10 15 20 25 30

Decoder Layer Index Decoder Layer Index Decoder Layer Index

Figure 1: Layer sensitivity and pruned Models. The first row of figures shows the increase in perplexity when a single
decoder layer is pruned at 50% sparsity, compared to the dense LLaMA-3.1-8B model, as well as models uniformly
pruned across all layers at 10% and 20% sparsity. The second row of figures illustrates the architecture of the pruned
models, with each decoder layer represented by its corresponding number of parameters.

that enforce the same sparsity across all decoder layers, Adapt-Pruner operates in multiple steps. At each step, it
calculates the relative importance of each decoder layer and applies varying sparsity levels, assigning higher sparsity to
less important layers and lower sparsity to more critical ones. After determining the sparsity for each layer, we assess
the importance of each weight group using both magnitude and first-order information, selecting the least important
groups for pruning. When computational resources allow, post-training stages are periodically applied after several
pruning steps to recover any performance loss resulting from the pruning process.

Our main contributions are as follows:

1. We propose a novel structured pruning method, Adapt-Pruner, which quantitatively estimates the importance
of each decoder layer and prunes adaptively.

2. This method leverages the insight that the importance of each decoder layer varies, and that their relative im-
portance may shift throughout the pruning process. This adaptiveness leads to higher performance, particularly
at high pruning ratios.

3. We conduct extensive experiments on LLaMA-3.1 [AI@Metal [2024]], Qwen2.5 [Teaml 2024al], and Gemma
[Teaml| 2024bf|, demonstrating that Adapt-Pruner can compress these models by up to 25%, while retaining
90.6% of the average benchmark scores of the dense model, without post-training, and outperforming state-of-
the-art methods.

2 Related Work

Pruning Pruning removes weights and modifies the model’s architecture. Formally, given a neural network f(x; W),
pruning produces a new model f(z; M ® W), where M € {0, 1}|W| is a binary mask that sets certain parameters to
zero, and ® denotes element-wise multiplication. Pruning typically reduces the network’s performance, so post-training
is often employed to recover this loss [Blalock et al.|[2020]. Unstructured pruning removes individual weights, resulting
in sparsified weight matrices, but this does not lead to inference speedups unless specialized hardware is available
[Dery et al.l [2024]]. In contrast, structured pruning operates at a larger granularity, removing entire weight groups.
This includes width pruning [Ma et al., 2023| |Ashkboos et al., [2024]], which removes groups of coupled weights, and
depth pruning [Kim et al., 2024, [Siddiqui et al.| 2024, which eliminates entire layers. Some approaches also explore
pruning during pretraining, achieving impressive results [Xia et al.,[2024]. However, given the immense computational
cost—equivalent to pretraining a model—this approach is often impractical. Our focus is on post-training structured
pruning, balancing generality and hardware efficiency.

Adaptive Compression Several works have explored adaptive compression. [Dong et al., 2024] selects transformer
feedforward experts and removes feedforward neurons during inference based on their high activation magnitudes from
input prompts. While this method is effective, we seek an approach that can reduce model size without depending
on specific input prompts. [An et al.,[2023]] computes the sample variance of each input feature and weights it by the

A PREPRINT

@ Evaluate layer importance : Compare input @ Prune coupled weight

_31.and output tensor p—

cee X

! - ! |

_______________ Output Attention MLP
Decoder layers; layer

1
1
AP . SO a

Embedded
layer

For each decoder layer

Figure 2: Illustration of Adapt-Pruner. We begin by measuring the distance between each decoder layer’s input and
output tensors to assess its importance and assign a corresponding sparsity. Based on this assigned sparsity, we then
prune the coupled weights in each decoder layer accordingly.

squared norm of the corresponding column in the weight matrix to determine a layer’s importance and assign sparsity
accordingly. However, compared to our method, which directly measures the distance between a layer’s input and
output tensors to determine importance, we achieve superior results (see).

Knowledge Distillation Knowledge distillation is a technique used to transfer the advanced capabilities of high-
performing LL.Ms to smaller models [Xu et al.,2024]. Combining knowledge distillation with pruning can yield strong
performance, where the original model acts as the teacher and the compressed model serves as the student [Sreenivas
et al.,|2024]. In this paper, we focus on the adaptive pruning algorithm, but it could achieve even better performance
when integrated with state-of-the-art knowledge distillation techniques.

3 Method

Given a large language model M, represented as a sequence of embedded layers with A/ decoder layers, denoted as
£V, along with a final output layer, our method leverages the insight that each decoder layer contributes differently
to the model’s overall performance. Adapt-Pruner compresses the model through multiple iterations, with each
iteration comprising three steps: (1) quantitatively computing the importance of each decoder layer and assigning
a corresponding pruning sparsity; (2) grouping the weights within each decoder layer, evaluating the importance of
each coupled structure, and pruning the least important structures based on the assigned sparsity; and (3) periodically
applying a post-training stage after a specified number of iterations to recover any performance drop caused by pruning.
Figure 2| gives an illustration of our method.

3.1 Assign Sparsity based on Importance

Let L denote the 74, decoder layer, 7' and S° represent the importance and sparsity of the 7;;, decoder layer, and
L: and L , denote the input and output tensors of the ¢, decoder layer, respectively. Our goal is to estimate the

importance of each decoder layer.

Estimate Decoder Layer’s Importance Our pruning method targets only the multi-head attention and multilayer
perceptron components within the decoder layers, leaving the hidden size unchanged. Consequently, the input and
output tensors for each decoder layer have identical shapes:

Vi=0,1,...,N — 1,Shape(L:,) = Shape(L! ;) = (B, L, H))
where B, L, H denote the batch size, sequence length, and hidden size, respectively. Based on this, we use a function
that measures the vector similarity or distance between L, and L, to assess the changes in the tensor caused by
each decoder layer. The greater the similarity or the smaller the distance between L;, and L}, ,, the less important that
decoder layer is. A practical choice for this distance measurement is cosine similarity. We can compute a decoder
layer’s importance as follows:

Vi=0,1,...,N —1,I" = —cosine_similarity(L%,, ! ,))

mo

A PREPRINT

Algorithm 1 Adaptive Pruning Algorithm

Require: Number of decoder layer in the LLM N, decoder layer instances in the LLM {£*} X, overall sparsity after pruning S,
iteration times to prune 7', iteration period to post-train P, amplitude of sparsity between decoder layers A, similarity function,
use cos in default Sim fyne <— cosine_similarity()

1: fori«+ 1...7 do

20 Secur < (Sxi/T)

3 T+ {0}, 8« {0}V
4 forj<1...Ndo _
50 I 4 Simpune(Ll, L)
6 end for

7 Normalize IV to have 0 mean value, limit range to [-1, 1] and times -1 if lower is better
8 forj<«1...Ndo

9: S« Scur — Ax I

10 end for

11 Prune the LLM based on the sparsity
12 if © mod P = 0 then

13 Post-train LLM

14 end if

15: end for

This method can easily be extended to alternative similarity or distance functions, such as Euclidean or Manhattan
distance. To ensure consistency, we normalize the decoder layer’s importance to the range [—1, 1] with a mean of 0, as
follows:

Ii = IZ - Imean (3)

. K
I'=— 4
max|abs(Z)| @

Assign Sparsity Now that we have computed the importance of each layer, we need a method to link a layer’s
importance to its sparsity. We adopt an empirical approach to address this. Let A denote the amplitude of sparsity, such
that we have:

Vi=0,1,...,.N—1,8 = Sppse — AxT" (3)

where Spqse is the target overall sparsity of the model. This method ensures that each decoder layer’s sparsity is
inversely proportional to its importance while maintaining the average sparsity consistent with the intended overall
model sparsity.

Based on the observations from[I] the importance of each layer varies throughout the pruning process. This variation
necessitates breaking the pruning into multiple iterative steps, allowing each layer’s sparsity to be adjusted progressively,
leading to improved results.

3.2 Pruning Weight Groups Inside Decoder Layer

We use the method from [Ma et al 2023, |Fang et al., 2023] to build dependency graph for LLMs, which could
automatically identify and extract coupled structures in LLMs.

Weight Group Importance With grouped structures and target sparsity defined for each group, the next step is
selecting weight matrices to prune to minimize performance degradation. For any grouped weight structure G = W*,
containing k weight matrices, we use a calibration dataset D to assess the relative importance of each matrix. Following
[LeCun et al.,|1989] Ma et al.,[2023]], the importance of the i;;, weight matrix in layer £ is defined as:

OLT (D) 1+ 3
Iy, = [ALD)| = |Lw, (D) = Lwi=o(D)| = | —57— Wi = Wi HW; + O (Iwal°) | (6)
where H = % is the Hessian matrix. Calculating the Hessian requires O(N?) computational resources, so we

omit it to accelerate pruning, as well as the term O (|WZ |3), which is generally small. This simplifies the estimated
weight matrix importance to:

. oL (D)

Ly, = \WWZ\ @)

A PREPRINT

Thus, we assess each weight matrix’s importance by taking the /; norm of the element-wise product between its gradient
(derived from the calibration dataset) and its weight value. After computing importance scores, we sort the matrices and
prune those with the lowest scores to achieve the desired sparsity level.

3.3 Periodic Recovery Post-Training with Knowledge Distillation

To achieve the target overall sparsity, our model undergoes multiple rounds of pruning, which inevitably leads to
performance degradation. To mitigate this, we periodically apply post-training after certain pruning steps to restore lost
performance. Balancing performance recovery with computational efficiency, we employ a low-rank approximation
method [Hu et al., [2021a] during post-training on the compressed model. Since additional pruning follows each
post-training phase, the low-rank matrices generated are merged back into the original weight matrices.

Knowledge distillation [Xu et al., 2024] enables the transfer of knowledge from a larger or more advanced teacher
model to a smaller, compressed student model. To preserve performance in the compressed model, we use the original
model as the teacher and the corresponding compressed model as the student. Specifically, during post-training, we add
a penalty term to the loss function to measure the divergence between the probability distributions of the teacher model,
P, and the student model, ps, given an input . This results in a modified loss function:

L = axLoss(pi (), ps(x)) + (1 — a) * Loss(label(z), ps(x)) (8)

where « is a hyperparameter that controls the influence of the teacher model on the student’s learning. By leveraging the
knowledge of the original model, the compressed model retains more of its performance. Algorithm[I]gives a detailed
description of our method.

4 Experiment

4.1 Settings

Setup We extend the LLM-Pruner framework [Ma et al., 2023 [Fang et al.l [2023]] as our baseline, incorporating
modules for computing similarity scores and adaptive pruning using PyTorch [Paszke et al., 2019]. Our experiments
utilize an NVIDIA A40 GPU with 48GB of memory for post-training and evaluation, while all pruning processes are
computed on an Intel(R) Xeon(R) Gold 6346 CPU, which features 16 cores per socket (32 cores total) running at 3.10
GHz.

In our experiments, we employ cosine similarity between the input and output tensors to assess the importance of
decoder layers. The calibration dataset we use is bookcorpus [Zhu et al.| 2015]], with a default of 10 examples, each
truncated to a length of 64 tokens.

Models and Datasets To demonstrate the effectiveness of our methods, we evaluate them on three widely-used
open-source models: Llama-3.1-8B [AI@Meta, [2024], Qwen2.5-7B [Team, 20244, Yang et al., 2024, and Gemma-2-9B
[Team, 2024b]. For task-agnostic performance evaluation of the pruned models, we perform zero-shot classification on
several common-sense reasoning datasets: ARC-easy and ARC-challenge [Clark et al.,[2018]], BoolQ Clark et al.|[2019],
HellaSwag [Zellers et al.l 2019]], OpenBookQA [Mihaylov et al., 2018]], PIQA [Bisk et al.,[2020], and WinoGrande
[Sakaguchi et al.,[2021]. Additionally, we supplement our evaluation with a generation task using WikiText2 [Merity
et al.| [2016]. Following prior work [Ma et al.| [2023} |An et al., 2023} |Ashkboos et al.| [2024]], we employ the LM
Evaluation Harness [Gao et al.,|2024]] with default parameters, except that all models use the bfloat16 data type, and the
batch size is set to ‘auto’ during evaluation.

Baseline Setup To validate the effectiveness of our adaptive pruning method based on decoder layer similarity, we
compare it to the LLM-Pruner framework. Additionally, we benchmark our approach against other state-of-the-art
structured pruning methods, including FLAP [An et al.l|[2023]] and SliceGPT [Ashkboos et al.l [2024]]. We evaluate
all methods at three sparsity ratios—25%, 50%, and 75%—without post-training to isolate the impact of the pruning
algorithm and avoid any unintended effects from post-training.

4.2 Results

Zero-shot and Generation Tasks We begin by evaluating our methods on three models: LLaMA-3.1-8B, Qwen2.5-
7B, and Gemma-2-9B, across 25%, 50%, and 75% pruning sparsity. We skip the first and last three decoder layers for
LLaMA and Qwen, and the first and last four layers for Gemma, as these layers tend to be too important for pruning.

A PREPRINT

Table 1: Zero-shot and generation task performance of the compressed LLaMA-3.1-8B, Qwen2.5-7B, and Gemma-2-9B
models. The average performance is calculated across seven classification datasets. For Gemma-2, the "eager" attention
implementation is used, as it is better suited for post-training. The evaluation metric is acc_norm for ARC-e, ARC-c,
HellaSwag, OBQA, and PIQA; acc for BoolQ and WinoGrande; and word_perplezity for WikiText2.

Pruning Sparsity Model | Para. Num. | ARC-e ARC-c BoolQ HellaSwag OBQA PIQA Winogrande | Average | WikiText2|
LLaMA-3.1-8B 8.03B 81.19 5333 82.08 78.89 4480 81.12 73.64 70.21 7.33
Dense Qwen2.5-7B 7.62B 7736 5102 84.68 78.93 4700 79.76 72.93 70.24 8.74
Gemma-2-9B 9.24B 88.05 66.04 84.34 79.89 46.80 83.19 74.11 74.63 10.60
Ratio = 25% LLaMA-3.1-8B 6.67B 70.16 4317 73.79 69.44 4200 77.20 71.19 63.85 14.26
atio = 25% Qwen2.5-7B 6.39B 67.13 4130 7297 68.67 4140 7737 65.27 62.02 14.51
wlo tune Gemma-2-9B 7.65B 7462 4701 75.60 60.81 3920 75.63 65.04 62.56 20.89
Ratio = 25 LLaMA-3.1-8B 6.67B 7546 47.18 8043 73.20 41.00 79.33 72.61 67.03 11.63
7“0 =25% Qwen2.5-7B 6.39B 7466 4770 78.75 71.93 4300 7851 69.46 66.29 12.44
W/ tune Gemma-2-9B 7.65B 80.43 5375 82.63 71.03 4220 78.89 68.43 68.19 15.49
Ratio = 50% LLaMA-3.1-8B 5.26B 5210 3157 63.27 51.51 33.60 7051 61.09 51.95 38.52
atio = 50% Qwen2.5-7B 5.13B 4545 2884 5547 51.36 36.80 69.42 56.27 49.09 44.07
w/o tune Gemma-2-9B 5.96B 5311 29.10 61.59 40.10 28.80 65.18 51.70 47.08 214.08
Ratio = 50% LLaMA-3.1-8B 5.26B 6174 3712 7135 59.62 33.60 72.96 64.72 57.30 19.46
j‘“" =% Qwen2.5-7B 5.13B 5269 33.62 54.07 57.69 3720 72.52 59.83 52.52 21.58
w/ tune Gemma-2-9B 5.96B 66.58 36.60 71.65 54.43 37.60 70.89 59.19 56.71 28.08
Ratio = 75% LLaMA-3.1-8B 4.20B 3258 2474 57.68 33.32 2640 58.05 5225 40.72 430.20
7“0 =17 Qwen2.5-7B 3.97B 3809 2253 5725 35.28 27.80 58.98 49.17 41.30 164.23

w/o tune Gemma-2-9B 4.32B 3030 24.74 4245 27.30 2560 52.45 50.59 36.20 | 203176.96
Ratio = 75% LLaMA-3.1-8B 4.20B 4600 2730 61.62 42.99 2840 64.85 55.09 46.61 35.20
7“0 =1>% Qwen2.5-7B 3.97B 4465 2662 54.83 40.67 30.00 63.28 54.38 44.92 37.90
W/ tune Gemma-2-9B 4.32B 4987 2713 56.61 37.10 2760 63.76 51.70 44.82 66.68

Table [T] presents the zero-shot performance and perplexity of pruned models at various sparsity levels. Our results show
that the pruned LLaMA models retain 90.9% of the benchmark average scores of the dense model at 25% sparsity and
74.0% at 50% sparsity without post-training. Similarly, the adaptive pruner achieves comparable results for the Qwen
and Gemma models, maintaining 88.3% and 83.8% performance at 25% sparsity, respectively, without post-training.
While perplexity increases moderately for LLaMA and Qwen at 25% and 50% sparsity, and for Gemma at 25%, it
rises dramatically beyond these levels. These findings highlight the effectiveness of the adaptive pruner in compressing
models without post-training. However, at 75% sparsity, performance declines significantly, likely due to architectural
disruption, suggesting that some post-training may be necessary to sustain the performance of highly compressed
models.

We further add experiments here with recovery post training using the dataset OpenHermes 2.5 [Teknium), [2023]]. We
apply a final post-training using LoRA [Hu et al., 2021b]). For all post-training experiments, we use 0.1 training epochs
with each data point truncated to 512 tokens. The LoRA configuration includes lora, = 128 and lora,lpha = 16, with
default values for all other hyperparameters from the Hugging Face PEFT package [Mangrulkar et al., 2022].

Table|l|also presents the results following post-training. With post-training, the average benchmark score for LLaMA
increases to 95.5% at 25% sparsity and 81.6% at 50% sparsity. However, it is important to note that the performance on
several benchmarks may drop after post-training. This decline could be attributed to knowledge forgetting, as the model
may adapt too closely to the post-training dataset used.

Structured Pruning Methods Comparison We compare our method to the baseline LLM-Pruner, as well as other
state-of-the-art structured pruning methods, including FLAP and SliceGPT. To ensure a fair comparison, we do not skip
the first or last layers when applying the adaptive pruner. All hyperparameters for these methods are set to their default
values. The LM Evaluation Harness [Gao et al.,|2024] is used to evaluate the compressed models produced by each
method.

Table 2] presents a comparison of structured pruning methods. Adaptive pruning demonstrates improvements of 20.6%
and 24.1% in average benchmark scores at 25% and 50% sparsity, respectively, compared to LLM-Pruner, which utilizes
uniform pruning. The results also indicate that the adaptive pruner outperforms both FLAP and SliceGPT at these
sparsity levels, suggesting that our method, which measures the changes in input and output tensors to evaluate decoder
layer importance, is more effective than FLAP’s approach, which combines input variance and weight magnitude.
However, as pruning sparsity increases, the performance gap between adaptive pruning and other methods narrows.
This may be due to higher sparsity leading to significant knowledge loss, resulting in similar performance across all
structured pruning methods.

A PREPRINT

Table 2: Comparison of structured pruning methods, including LLM-Pruner, FLAP, and SliceGPT, on LLaMA-3.1-8B
across different sparsity levels. Bold font indicates the optimal method for each criterion within the same sparsity group.

Pruning Sparsity Method | Para. Num. | ARC-e ARC-c BoolQ HellaSwag OBQA PIQA Winogrande | Average | WikiText2|
LLM-Pruner 6.29B 48.15 30.80 61.41 50.02 29.40 68.28 51.78 48.55 24.85
Ratio = 25% FLAP 6.12B 49.20 30.03 57.74 52.18 3540 68.99 59.98 50.50 15.35
w/o tune SliceGPT 6.78B 42.93 27.39 37.86 44.99 33.80 58.65 60.69 43.76 30.96
Adapt-Pruner 6.36B 64.56 38.82 64.83 62.99 39.60 77.48 67.40 59.38 18.69
LLM-Pruner 4.54B 25.55 2491 37.86 25.95 27.60 51.03 49.64 34.65 632.58
Ratio = 50% FLAP 4.34B 24.20 25.26 40.70 26.37 26.00 51.25 50.36 34.88 270251.54
w/o tune SliceGPT 4.58B 30.72 22.01 37.83 29.85 24.60 51.85 48.70 35.08 118.55
Adapt-Pruner 4.61B 37.29 25.17 60.73 35.60 28.80 60.77 52.09 42.92 95.59
LLM-Pruner 2.80B 25.72 24.83 38.65 25.74 29.60 50.16 50.59 35.04 5478.46
Ratio = 75% FLAP 2.77B 25.34 26.71 43.06 26.42 28.60 5245 49.88 36.07 169822.13
w/o tune SliceGPT 2.52B 28.20 22.01 37.83 27.77 24.80 51.09 50.12 34.55 741.92
Adapt-Pruner 2.88B 27.74 22.27 39.14 27.15 27.00 52.61 50.83 35.25 734.18

4.3 More Analysis

Efficient Performance Transfer via Model Compression We investigate the efficacy of model compression as an
alternative to training from scratch, with particular focus on computational efficiency. Through knowledge distillation
and comprehensive parameter fine-tuning on OpenHermes-2.5, we demonstrate our method’s versatility by compressing
two different architectures: LLaMA-3.2-3B to 1.13B parameters and LLaMA-2-7B to 1.16B parameters. We conduct
comparative analyses against similarly-sized pretrained models to evaluate compression effectiveness. The pretrained
TinyLlama-1.1 checkpoint serves as our baseline, enabling quantitative assessment of performance preservation through
distillation despite pruning-induced degradation.

Table 3: Comparison of Compressed Model with Pretrained Model

Model | Para. Num. | Tokens Needed | ARC-e ARC-c BoolQ HellaSwag OBQA PIQA Winogrande | Average | WikiText2|
0.00B 26.52 27.39 38.81 25.79 24.00 49.73 49.80 34.58 69962.30
Compressed 1.16B 0.06B 36.36 22.87 58.84 27.86 26.80 5745 50.04 40.03 119.74
LLaMA2-7B : 0.14B 38.26 24.15 60.40 28.61 2580 5691 49.72 40.55 86.58
0.17B 38.43 24.06 60.12 28.68 27.40 57.02 49.80 40.79 84.76
0.00B 26.26 25.77 41.87 25.86 2780 51.63 50.91 35.73 1940.24
Compressed L13B 0.05B 42.85 24.66 60.49 29.05 28.40 58.87 50.04 42.05 65.94
LLaMA3.2-3B . 0.11B 43.31 24.32 61.56 28.95 31.40 60.55 51.38 43.07 5191
0.15B 43.48 24.57 61.87 28.78 29.40 60.34 49.96 42.63 49.59
TinyLlama-1.1 L10B 10B 38.59 22.53 47.95 33.12 30.20 61.70 50.91 40.71 33.48
Y ’ : 21B 41.08 23.72 58.38 35.79 30.20 63.60 52.49 43.61 27.39

As demonstrated in Table 3] our compressed 1.1B model achieves superior performance to TinyLlama-1.1 while
requiring only 0.05B training tokens, compared to TinyLlama’s 10B pretraining tokens. This empirical evidence
substantiates that structured pruning, combined with knowledge distillation, not only enables model size reduction
but also provides a computationally efficient framework for obtaining high-performing compact models. The 200 x
reduction in required training tokens highlights the significant computational advantages of our compression-based
approach.

Sensitivity Analysis of Amplitude Parameter A We empirically investigate the impact of amplitude parameter
A in Equation [5|on our algorithm’s performance. The amplitude A directly influences the architectural search space
of the compressed model: insufficient amplitude constrains the exploration of potential architectural configurations,
while excessive amplitude can lead to structural imbalances that degrade model performance. To systematically
analyze this relationship, we conduct experiments on LLaMA-3.1-8B using a controlled setup where we maintain
consistent parameters (50% overall sparsity ratio and 50 pruning iterations) while varying the amplitude A across
pruning steps. This experimental design allows us to isolate and quantify the specific effects of amplitude variation on
model compression outcomes.

As demonstrated in Table[d] the baseline case of A = 0 represents uniform pruning without our proposed adaptive
mechanism. Notably, varying the amplitude A yields different final parameter counts due to its influence on architectural
decisions during compression. Our experimental results reveal that A = 0.02 achieves optimal performance, maximizing
the benchmark average while minimizing model complexity on WikiText2. The performance exhibits a non-monotonic

A PREPRINT

Table 4: Sensitivity analysis of amplitude parameter A in progressive pruning, with 50% sparsity and 50 pruning steps

Amplitude A | Para. Num. | ARC-e ARC-c BoolQ HellaSwag OBQA PIQA Winogrande | Average | WikiText2|

0 4.54B 29.04 21.84 4547 28.22 27.00 53.81 48.30 36.24 621.03
0.005 4.62B 37.25 22.87 55.90 33.89 27.80 59.52 52.64 41.41 122.04
0.01 4.61B 3729 2517 60.73 35.60 28.80 60.77 52.09 42.92 95.59
0.02 4.43B 40.61 2645 62.05 35.18 2820 62.30 53.67 44.07 90.80
0.04 4.04B 34.51 24.06 56.21 31.17 2640 57.34 51.78 40.21 314.90

relationship with A: as amplitude increases, model performance initially improves before degrading, consistent with the
theoretical trade-off between exploration capacity and architectural stability.

Impact of Distillation Coefficient « We systematically analyze the distillation coefficient « in the objective function
(Equation [8), which controls the balance between learning from ground truth labels and the teacher model’s behavior
during post-training. Using the optimal compressed model configuration identified in Table[d we conduct controlled
experiments with varying « values while maintaining consistent hyperparameters. The experiments utilize LoRA for
fine-tuning on the OpenHermes-2.5 dataset, with the original LLaMA-3.1-8B serving as the teacher model.

Table 5: Impact of Distillation Coefficient o using LoRA with LLaMA-3.1-8B as the teacher model
Tokens Needed | Coefficient | ARC-e ARC-c BoolQ HellaSwag OBQA PIQA Winogrande | Average | WikiText2|

0 49.75 2756 62.84 46.37 3220 68.12 56.51 49.05 33.78

0.25 4992 2765 62.20 46.65 30.60 68.50 56.91 48.92 33.67

0.04B 0.50 5042 2816 62.11 46.95 30.00 68.44 55.96 48.86 34.00
0.75 50.13 27.99 6235 47.23 3040 68.50 56.12 48.96 34.59

1.00 49.75 28.58 6242 46.68 29.80 68.61 55.64 48.78 36.13

As demonstrated in Table[3]

Computation Cost LLaMA-3.1-8B, Qwen2.5-7B, and Gemma-2-9B can be pruned adaptively in 2 to 5 minutes on a
single NVIDIA A40 GPU, and in 15 to 30 minutes on an Intel(R) Xeon(R) Gold 6346 CPU. After applying iterative
post-training, the full compression process takes between 3 and 10 hours. Benchmark evaluation of the compressed
models requires an additional 15 to 30 minutes.

5 Conclusion

In this paper, we present Adapt-Pruner, an adaptive and structured pruning method for large language models. Our
approach evaluates each decoder layer and assigns corresponding sparsity, prunes coupled weight structures based
on weight magnitude and first-order information, and periodically applies post-training to recover any performance
drops. We test our method on a variety of popular open-source LLMs. The results show that Adapt-Pruner retains
90.9%, 88.3%, and 83.8% of the benchmark average scores of the dense model at 25% sparsity without post-training
for LLaMA-3.1, Qwen2.5, and Gemma-2, respectively. With periodic post-training, these scores increase to 95.5%,
94.4%, and 91.4%, respectively. Our experiments also demonstrate that Adapt-Pruner outperforms other structured
pruning methods, including SliceGPT and FLAP, indicating that our method, which measures changes in input and
output tensors to evaluate decoder layer importance, is more effective than FLAP’s approach, which combines input
variance and weight magnitude.

There is room for improvement in our method. Currently, we relate layer importance to sparsity using a straightforward
amplitude, which may not be the optimal approach to fully leverage this information for achieving theoretical maximum
effectiveness. Additionally, while periodic post-training during pruning helps recover performance losses, it also
imposes quality demands on the dataset, potentially causing the LLMs to forget previously learned information.
Moreover, post-training can introduce significant computational costs to the pruning process. Future work could focus
on enhancing the efficiency of post-training to address these challenges.

We hope our work inspires future research to quantitatively evaluate the importance of decoder layers and leverage this
insight when compressing LLMs, ultimately leading to the development of more efficient deep neural networks.

A PREPRINT

References

Katikapalli Subramanyam Kalyan. A survey of gpt-3 family large language models including chatgpt and gpt-4. Natural
Language Processing Journal, 6:100048, 2024. ISSN 2949-7191. doi:https://doi.org/10.1016/j.nlp.2023.100048.
URL https://www.sciencedirect.com/science/article/pii/S2949719123000456.

OpenAl. Gpt-4 technical report, 2023.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yinggian Min, Beichen Zhang, Junjie
Zhang, Zican Dong, et al. A survey of large language models. arXiv preprint arXiv:2303.18223,2023.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for large language models,
2024. URL https://arxiv.org/abs/2308.07633.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning: Taxonomy,
comparison, analysis, and recommendations. /EEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A survey of quantization
methods for efficient neural network inference. In Low-Power Computer Vision, pages 291-326. Chapman and
Hall/CRC, 2022.

Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ramabhadran. Low-rank matrix
factorization for deep neural network training with high-dimensional output targets. In 2013 IEEE international
conference on acoustics, speech and signal processing, pages 6655-6659. IEEE, 2013.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A survey. International
Journal of Computer Vision, 129(6):1789-1819, 2021.

Yang He and Lingao Xiao. Structured pruning for deep convolutional neural networks: A survey. IEEFE transactions on
pattern analysis and machine intelligence, 2023.

Al@Meta. Llama 3 model card. 2024. URL https://github.com/meta-1lama/llama3/blob/main/MODEL_
CARD .md.

Qwen Team. Qwen2.5: A party of foundation models, September 2024a. URL https://qwenlm.github.io/blog/
qwen2.5/.

Gemma Team. Gemma. 2024b. doi:10.34740/KAGGLE/M/3301. URL https://www.kaggle.com/m/3301.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of neural network
pruning? In I. Dhillon, D. Papailiopoulos, and V. Sze, editors, Proceedings of Machine Learning and Systems,
volume 2, pages 129-146, 2020. URL https://proceedings.mlsys.org/paper_files/paper/2020/file/
6c44dc73014d66ba49b28d483a8f8b0d-Paper . pdf.

Lucio Dery, Steven Kolawole, Jean-Francois Kagy, Virginia Smith, Graham Neubig, and Ameet Talwalkar. Everybody
prune now: Structured pruning of llms with only forward passes, 2024. URL https://arxiv.org/abs/2402!|
05406.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large language models. In
Advances in Neural Information Processing Systems, 2023.

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James Hensman. Slicegpt:
Compress large language models by deleting rows and columns, 2024. URL https://arxiv.org/abs/2401,
15024.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and Hyoung-Kyu Song.
Shortened llama: Depth pruning for large language models with comparison of retraining methods, 2024. URL
https://arxiv.org/abs/2402.02834.

Shoaib Ahmed Siddiqui, Xin Dong, Greg Heinrich, Thomas Breuel, Jan Kautz, David Krueger, and Pavlo Molchanov.
A deeper look at depth pruning of 1lms, 2024. URL https://arxiv.org/abs/2407.16286|

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Dangi Chen. Sheared llama: Accelerating language model pre-training
via structured pruning, 2024. URL https://arxiv.org/abs/2310.06694.

Harry Dong, Beidi Chen, and Yuejie Chi. Prompt-prompted adaptive structured pruning for efficient llm generation. In
First Conference on Language Modeling, 2024.

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jingiao Wang. Fluctuation-based adaptive structured pruning for large
language models, 2023.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu, Dacheng Tao, and Tianyi Zhou.
A survey on knowledge distillation of large language models, 2024. URL https://arxiv.org/abs/2402.13116.

https://doi.org/https://doi.org/10.1016/j.nlp.2023.100048
https://www.sciencedirect.com/science/article/pii/S2949719123000456
https://arxiv.org/abs/2308.07633
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://doi.org/10.34740/KAGGLE/M/3301
https://www.kaggle.com/m/3301
https://proceedings.mlsys.org/paper_files/paper/2020/file/6c44dc73014d66ba49b28d483a8f8b0d-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/6c44dc73014d66ba49b28d483a8f8b0d-Paper.pdf
https://arxiv.org/abs/2402.05406
https://arxiv.org/abs/2402.05406
https://arxiv.org/abs/2401.15024
https://arxiv.org/abs/2401.15024
https://arxiv.org/abs/2402.02834
https://arxiv.org/abs/2407.16286
https://arxiv.org/abs/2310.06694
https://arxiv.org/abs/2402.13116

A PREPRINT

Sharath Turuvekere Sreenivas, Saurav Muralidharan, Raviraj Joshi, Marcin Chochowski, Mostofa Patwary, Mohammad
Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Llm pruning and distillation in practice: The minitron
approach, 2024. URL https://arxiv.org/abs/2408.11796,

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards any structural pruning.
The IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information processing systems,
2, 1989.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models, 2021a.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems, 32, 2019.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and Sanja Fidler.
Aligning books and movies: Towards story-like visual explanations by watching movies and reading books. In The
IEEE International Conference on Computer Vision (ICCV), December 2015.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng
Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei
Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen,
Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan,
Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen?2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord.
Think you have solved question answering? try arc, the ai2 reasoning challenge. ArXiv, abs/1803.05457, 2018. URL
https://api.semanticscholar.org/CorpusID:3922816,

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova. BoolQ:
Exploring the surprising difficulty of natural yes/no questions. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2924-2936, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics. doij10.18653/v1/N19-1300. URL https://aclanthology.org/N19-1300.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really finish your
sentence? arXiv preprint arXiv:1905.07830, 2019.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity? a new
dataset for open book question answering. In EMNLP, 2018.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about physical
commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial Intelligence, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial winograd
schema challenge at scale. Communications of the ACM, 64(9):99-106, 2021.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models, 2016.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris Ociepa, Jason
Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben
Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation, 07 2024. URL
https://zenodo.org/records/12608602.

Teknium. Openhermes 2.5: An open dataset of synthetic data for generalist llm assistants, 2023. URL https:
//huggingface.co/datasets/teknium/OpenHermes-2.5,

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models, 2021b. URL https://arxiv.org/abs/2106.09685.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin Bossan. Peft:
State-of-the-art parameter-efficient fine-tuning methods. https://github.com/huggingface/peft, 2022.

10

https://arxiv.org/abs/2408.11796
https://api.semanticscholar.org/CorpusID:3922816
https://doi.org/10.18653/v1/N19-1300
https://aclanthology.org/N19-1300
https://zenodo.org/records/12608602
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://arxiv.org/abs/2106.09685
https://github.com/huggingface/peft

	Introduction
	Related Work
	Method
	Assign Sparsity based on Importance
	Pruning Weight Groups Inside Decoder Layer
	Periodic Recovery Post-Training with Knowledge Distillation

	Experiment
	Settings
	Results
	More Analysis

	Conclusion

